Umfang: Unterschied zwischen den Versionen

Aus Grundschullernportal
Wechseln zu: Navigation, Suche
Zeile 7: Zeile 7:
 
Legt man ein Maßband um einen Gegenstand und liest das Ergebnis ab, so hat man den Umfang des Gegenstands. <br />
 
Legt man ein Maßband um einen Gegenstand und liest das Ergebnis ab, so hat man den Umfang des Gegenstands. <br />
 
<br />
 
<br />
Da das Messen des Umfangs aber ungenau ist, berechnet man den Umfang in der Mathematik.
+
Meistens wird der Umfang berechnet, da das Messen nicht immer genau ist.
  
  
Zeile 14: Zeile 14:
  
 
=== '''Umfangsberechnung Ebener Figuren''' ===
 
=== '''Umfangsberechnung Ebener Figuren''' ===
 +
  
  
Zeile 25: Zeile 26:
  
  
 +
==== Umfang Dreieck ====
  
==== Umfang Rechteck ====
+
[[Datei:Umfang Dreieck NEU.png|thumb||250px|left]]
  
[[Datei:Umfang Rechteck.png|thumb||300px|left]]
 
  
  
Zeile 43: Zeile 44:
  
  
Umfang (U) = a + a + b + b
 
                    '''= 2 x a + 2 x b'''
 
  
  
 +
Umfang (U) = '''a + b + c'''
  
==== Umfang Quadrat ====
 
  
[[Datei:Umfang Quadrat.png|thumb||280px|left]]
+
==== Umfang Rechteck ====
  
 +
[[Datei:Umfang Rechteck.png|thumb||300px|left]]
  
  
Zeile 66: Zeile 66:
  
  
 +
Umfang (U) = a + a + b + b
 +
                    '''= 2 x a + 2 x b'''
  
Umfang (U) = a + a + a + a
+
[[Matheprojekte der Justus-Liebig-Universität Gießen für Grundschülerinnen und Grundschüler/Mathelexikon WiSe 16 17/Rechteck|Rechteck]]
                    '''= 4 x a'''
+
  
 +
==== Umfang Quadrat ====
  
 +
[[Datei:Umfang Quadrat.png|thumb||280px|left]]
  
==== Umfang Dreieck ====
 
  
[[Datei:Umfang Dreieck NEU.png|thumb||250px|left]]
 
  
  
Zeile 89: Zeile 90:
  
  
 +
Umfang (U) = a + a + a + a
 +
                    '''= 4 x a'''
  
 +
[[Matheprojekte der Justus-Liebig-Universität Gießen für Grundschülerinnen und Grundschüler/Mathelexikon WiSe 16 17/Quadrat|Quadrat]]
  
  
Umfang (U) = '''a + b + c'''
 
  
  

Version vom 24. Januar 2017, 17:31 Uhr

Inhaltsverzeichnis

Der Umfang

Bildschirmfoto Umfang.png

Der Umfang beschreibt die Länge der Außenlinie die eine Form, einen Gegenstand oder eine mathematische Figur umfasst.

Legt man ein Maßband um einen Gegenstand und liest das Ergebnis ab, so hat man den Umfang des Gegenstands.

Meistens wird der Umfang berechnet, da das Messen nicht immer genau ist.



Umfangsberechnung Ebener Figuren

Sehr häufig hat man es in der Mathematik mit ebenen Figuren zu tun.
Für die Berechnung des Umfangs einer ebenen Figur muss man die Länge aller Seiten kennen.

Die Summe aller Seiten ergibt den Umfang, man muss sie also alle addieren um den Umfang zu erhalten.


Für die Berechnung des Umfangs der ebenen Figuren gibt es Formeln, welche alle das Prinzip der Summe aller Seiten beinhalten.


Umfang Dreieck

Umfang Dreieck NEU.png









Umfang (U) = a + b + c


Umfang Rechteck

Umfang Rechteck.png








Umfang (U) = a + a + b + b 
                    = 2 x a + 2 x b

Rechteck

Umfang Quadrat

Umfang Quadrat.png









Umfang (U) = a + a + a + a
                    = 4 x a

Quadrat




Es gibt natürlich noch viele weitere ebene Figuren. Das Prinzip zur Berechnung des Umfangs ist aber immer das Selbe. Eine Ausnahme bildet hier nur der Kreis.

Umfang beliebiges Vieleck

Umfang Vieleck.png










Umfang (U) = a + b + c + d + e + f